Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 234: 113688, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128360

RESUMO

HYPOTHESIS: The antidepressant drug imipramine, and its metabolite desipramine show different extents of interaction with, and passive permeation through, cellular membrane models, with the effects depending on the membrane composition. Through multimodal interrogation, we can observe that the drugs have a direct impact on the physicochemical properties of the membrane, that may play a role in their pharmacokinetics. EXPERIMENTS: Microcavity pore-suspended lipid bilayers (MSLBs) of four different compositions, each with a different headgroup charge namely; zwitterionic dioleoylphosphatidylcholine (DOPC), mixed DOPC and negatively charged dioleoylphosphatidylglycerol (DOPG) (3:1), mixed DOPC and positively charged dioleoyltrimethylammoniumpropane (DOTAP) (3:1), and with increasing complex composition mimicking blood-brain-barrier (BBB) were prepared on gold and polydimethylsiloxane (PDMS) substrates using a Langmuir-Blodgett-vesicle fusion method. The molecular interaction and permeation of antidepressants, imipramine, and its metabolite desipramine with the lipid bilayers were evaluated using highly sensitive label-free electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS). Drug-induced membrane packing/fluidity alterations were assessed using fluorescence lifetime imaging (FLIM) and fluorescence lifetime correlation spectroscopy (FLCS) of MSLB over microfluidic PDMS array. FINDINGS: Using EIS to evaluate in real-time membrane admittance changes, we found that imipramine greatly increases the ion permeability of negatively charged DOPC:DOPG (3:1) membranes. The effect was observed also at neutral (DOPC) and to a lesser extent at positively charged DOPC:DOTAP(3:1) membranes. In contrast, desipramine had a much weaker impact on ion permeability across all bilayer compositions. Temporal capacitance data show that desipramine intercalates at negatively charged membrane thereby increasing the thickness of the membrane. The overall kinetics of the imipramine permeation is higher than that of desipramine. This was confirmed using SERS, which also provides an evaluation of drug passive permeation based on arrival time across the membrane. Using FLCS, we found that imipramine increases the lipid membrane fluidity, whereas desipramine lowers it, with the exception of the negatively charged membrane. A translocation rate pharmacokinetics model was established for the first time at the MSLB platform by real-time monitoring of the variation in membrane resistance of pristine DOPC and blood-brain-barrier (BBB) membrane.


Assuntos
Ácidos Graxos Monoinsaturados , Imipramina , Bicamadas Lipídicas , Compostos de Amônio Quaternário , Bicamadas Lipídicas/química , Desipramina , Fosfatidilcolinas/química , Antidepressivos , Permeabilidade
2.
Mikrochim Acta ; 190(8): 332, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500736

RESUMO

Astaxanthin (AXT) is a lipophilic antioxidant and anti-inflammatory natural pigment whose cellular uptake and bioavailability could be improved via liposomal encapsulation. Endothelial cells (EC) line the lumen of all blood vessels and are tasked with multiple roles toward maintaining cardiovascular homeostasis. Endothelial dysfunction is linked to the development of many diseases and is closely interconnected with oxidative stress and vascular inflammation. The uptake of free and liposomal AXT into EC was investigated using Raman and fluorescence microscopies. AXT was either encapsulated in neutral or cationic liposomes. Enhanced uptake and anti-inflammatory effects of liposomal AXT were observed. The anti-inflammatory effects of liposomal AXT were especially prominent in reducing EC lipid unsaturation, lowering numbers of lipid droplets (LDs), and decreasing intercellular adhesion molecule 1 (ICAM-1) overexpression, which is considered a well-known marker for endothelial inflammation. These findings highlight the benefits of AXT liposomal encapsulation on EC and the applicability of Raman imaging to investigate such effects.


Assuntos
Células Endoteliais , Lipossomos , Humanos , Inflamação/tratamento farmacológico , Imagem Óptica
3.
J Phys Chem Lett ; 14(16): 3920-3928, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37075204

RESUMO

Antimicrobial peptides (AMPs) offer significant hope in the fight against antibiotic resistance. Operating via a mechanism different from that of antibiotics, they target the microbial membrane and ideally should damage it without impacting mammalian cells. Here, the interactions of two AMPs, magainin 2 and PGLa, and their synergistic effects on bacterial and mammalian membrane models were studied using electrochemical impedance spectroscopy, atomic force microscopy (AFM), and fluorescence correlation spectroscopy. Toroidal pore formation was observed by AFM when the two AMPs were combined, while individually AMP effects were confined to the exterior leaflet of the bacterial membrane analogue. Using microcavity-supported lipid bilayers, the diffusivity of each bilayer leaflet could be studied independently, and we observed that combined, the AMPs penetrate both leaflets of the bacterial model but individually each peptide had a limited impact on the proximal leaflet of the bacterial model. The impact of AMPs on a ternary, mammalian mimetic membrane was much weaker.


Assuntos
Peptídeos Antimicrobianos , Bicamadas Lipídicas , Animais , Magaininas/química , Magaininas/farmacologia , Bicamadas Lipídicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectrometria de Fluorescência , Membrana Celular , Mamíferos
4.
Chemistry ; 29(24): e202300239, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36802283

RESUMO

BODIPY heterochromophores, asymmetrically substituted with perylene and/or iodine at the 2 and 6 positions were prepared and investigated as sensitizers for triplet-triplet annihilation up conversion (TTA-UC). Single-crystal X-ray crystallographic analyses show that the torsion angle between BODIPY and perylene units lie between 73.54 and 74.51, though they are not orthogonal. Both compounds show intense, charge transfer absorption and emission profiles, confirmed by resonance Raman spectroscopy and consistent with DFT calculations. The emission quantum yield was solvent dependent but the emission profile remained characteristic of CT transition across all solvents explored. Both BODIPY derivatives were found to be effective sensitizers of TTA-UC with perylene annihilator in dioxane and DMSO. Intense anti-Stokes emission was observed, and visible by eye from these solvents. Conversely, no TTA-UC was observed from the other solvents explored, including from non-polar solvents such as toluene and hexane that yielded brightest fluorescence from the BODIPY derivatives. In dioxane, the power density plots obtained were strongly consistent with TTA-UC and the power density threshold, the Ith value (the photon flux at which 50 % of ΦTTAUC is achieved), for B2PI was observed to be 2.5x lower than of B2P under optimal conditions, an effect ascribed to the combined influence of spin-orbit charge transfer intersystem crossing (SOCT-ISC) and heavy metal on the triplet state formation for B2PI.

5.
Langmuir ; 38(20): 6411-6424, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35561255

RESUMO

Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.


Assuntos
Bicamadas Lipídicas , Quinacrina , Membrana Celular/metabolismo , Colesterol/química , Espectroscopia Dielétrica , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Quinacrina/farmacologia
6.
Chemistry ; 27(68): 17203-17212, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34726811

RESUMO

Covalent functionalisation with alkyl tails is a common method for supporting molecular catalysts and photosensitisers onto lipid bilayers, but the influence of the alkyl chain length on the photocatalytic performances of the resulting liposomes is not well understood. In this work, we first prepared a series of rhenium-based CO2 -reduction catalysts [Re(4,4'-(Cn H2n+1 )2 -bpy)(CO)3 Cl] (ReCn ; 4,4'-(Cn H2n+1 )2 -bpy=4,4'-dialkyl-2,2'-bipyridine) and ruthenium-based photosensitisers [Ru(bpy)2 (4,4'-(Cn H2n+1 )2 -bpy)](PF6 )2 (RuCn ) with different alkyl chain lengths (n=0, 9, 12, 15, 17, and 19). We then prepared a series of PEGylated DPPC liposomes containing RuCn and ReCn , hereafter noted Cn , to perform photocatalytic CO2 reduction in the presence of sodium ascorbate. The photocatalytic performance of the Cn liposomes was found to depend on the alkyl tail length, as the turnover number for CO (TON) was inversely correlated to the alkyl chain length, with a more than fivefold higher CO production (TON=14.5) for the C9 liposomes, compared to C19 (TON=2.8). Based on immobilisation efficiency quantification, diffusion kinetics, and time-resolved spectroscopy, we identified the main reason for this trend: two types of membrane-bound RuCn species can be found in the membrane, either deeply buried in the bilayer and diffusing slowly, or less buried with much faster diffusion kinetics. Our data suggest that the higher photocatalytic performance of the C9 system is due to the higher fraction of the more mobile and less buried molecular species, which leads to enhanced electron transfer kinetics between RuC9 and ReC9 .


Assuntos
Lipossomos , Compostos Organometálicos , Dióxido de Carbono , Elétrons , Cinética
7.
Mikrochim Acta ; 185(9): 411, 2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-30099653

RESUMO

Delaminated 2D sheets of MoSe2 were prepared by liquid phase exfoliation and were embedded over high surface area hydrogen exfoliated graphene (HEG) by a simple technique. The MoSe2/HEG hybrid composite exhibits fast heterogeneous electron-transfer (HET) and a high electrochemically active surface area compared to only HEG. When employed for detection of NADH, it exhibits electrooxidation at a low potential of 150 mV (vs. Ag/AgCl) with high sensitivity of 0.0814 µA⋅µM-1⋅cm2 over a wide linear range (1-280 µM), good selectivity, and a low limit of detection (1 µM). The good performance of the composite is due to the homogeneously dispersed 2D sheets of MoSe2 over large-surface area HEG, which retain its electrochemical activity, prevents restacking, and acts as an electron transfer channel. On the basis of the above analytical requirements and its easy synthesis, the hybrid composite represents a robust material for electrochemical sensing. Graphical abstract Schematic of the 2D MoSe2/HEG composite for electrochemical detection of NADH.

8.
Chem Commun (Camb) ; 53(70): 9809-9812, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28820532

RESUMO

Herein, we report a single step, anionic surfactant-assisted, low temperature-hydrothermal synthetic strategy of CoO nanoparticles anchored on ß-Co(OH)2 nanosheets which show a low overpotential (295 mV @ 10 mA cm-2) for the oxygen evolution reaction (OER). They also demonstrate much better kinetic parameters compared to the state-of-the-art RuO2. Interestingly, under the OER operational conditions (in alkaline medium), the topotactic transformation of α-Co(OH)2 to a stable Brucite-like ß-Co(OH)2 phase leads to a synergistic interaction between the ß-Co(OH)2 sheets on the CoO nanoparticles for enhancing the OER electrocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...